
On the shapes of functions generated by random
neural networks

David Holmes

December 6, 2022

Abstract

We consider functions from R → R output by a neural network with 1
hidden activation layer, arbitrary width, and ReLU activation function. We
assume that the parameters of the neural network are chosen uniformly at
random with respect to various probability distributions, and compute the
expected distribution of the points of non-linearity. We use these results to
explain why the network may be biased towards outputting functions with
simpler geometry, and why certain functions with low information-theoretic
complexity are nonetheless hard for a neural network to approximate.

Contents

1 Introduction 2
1.1 Statement of main results . 3

1.1.1 Rectangular parameter space 3
1.1.2 Functions on an unbounded domain 4
1.1.3 Spherical parameter space 4

1.2 Possible generalisations and extensions 5
1.3 Training data . 5
1.4 Higher dimensions . 5
1.5 Different activation functions . 6

2 DNNs with ReLU activation; rectangular norm 6

3 DNNs with ReLU activation; operator norm 7

1

1 Introduction

It has been suggested [VPCL18, MSVP+19, MVPSL20] that neural networks are
biased in favour of outputting ‘simple’ functions. The above papers interpret
simplicity in an information-theoretic fashion, suggesting that functions output by
neural networks tend to have small information-theoretic complexity. The converse
is not true in general; for example, it is relatively hard for a neural network to
learn a periodic function such as the integral of x 7→ (−1)bx/nc compared to its low
information-theoretic complexity.

We study some more geometric properties of functions which help to predict
how easily they are generated by a neural network. We consider functions defined
on an interval (−R,R) ⊆ R, and write PLr(R) for the space of piecewise-affine-
linear (PL) real-valued functions on (−R,R). Given positive integer w we write
PLR,≤w(R) for the subspace of those PL functions with at most w points of non-
linearity.

We consider a neural network with one hidden activation layer, and ReLU
activation function. Then the space of functions output by the neural network is
exactly the space PL≤w. As such, one way of ‘randomly’ generating elements of
PL≤w is to ‘randomly’ choose the weights of the neural network. Our main result,
approximately stated, has two flavours:

1. For R fairly small, if a function in PL≤w is generated by a random neural
network with ReLU activation, then it is likely to have much fewer than w
points of non-linearity.

2. For R large, the points of non-linearity behave as if they are sampled from
a probability distribution with mass function of shape

x 7→ min(
1

4
,

1

4x2
). (1.0.1)

In particular, whether r is large or small, a periodic zigzag function such as the in-
tegral of x 7→ (−1)bx/nc is hard to approximate relative to its information-theoretic
complexity.

Of course, the exact statements depend on how we choose the parameters of
our neural network. Perhaps surprisingly, we will see that the distribution of the
points of non-linearity depends very heavily on the distribution of the parame-
ters. If the bias towards simple functions underlies generalisation properties of
over-parameterised neural networks (as proposed in [MVPSL20], this may help to
explain why some gradient descent schemes generalise better than others (as they
approximate random sampling with respect to distributions more heavily favouring
simple functions).

2

1.1 Statement of main results

Our neural network has parameters taking values in some measurable subset of
Θ of a real vector space. The probabilities of seeing a given number of points of
non-linearity turn out to be highly dependent on the shape of the parameter space
Θ, but independent of the size of Θ. We will consider two different ‘shapes’, one
‘rectangular’ and the other ‘spherical’.

1.1.1 Rectangular parameter space

We consider neural networks with one hidden activation layer, defining functions
from (−R,R) ⊆ R to R. We write w for the width (a positive integer). Our
parameter space Θ is naturally a product of 4 pieces:

1. a linear part in the first layer; this gives a subspace of Rw, denoted ΘL

2. a translation part in the first layer; this again gives a subspace of Rw, denoted
ΘT

3. a linear part in the final layer; this again gives a subspace of Rw, denoted
Θ′L

4. a translation part in the final layer; this gives a subspace of R, denoted Θ′T .

So Θ = ΘL×ΘT×Θ′L×Θ′T . Now it turns out that Θ′L and Θ′T have no effect on the
number of points of non-linearity (outside some measure-zero subset of Θ′L, which
we ignore). So it suffices to describe the spaces ΘL and ΘT , and their probability
measures.

For this we fix a positive real number T . We define

ΘL = ΘT = [−T, T]w, (1.1.1)

a box of side-length T and dimension w, centred at 0 ∈ Rw. We equip it with the
lebesgue measure. In other words,

• the ‘translation’ part of the first layer is chosen uniformly at random between
−T and T at each neuron;

• the scaling factor at each neuron in the first layer is chosen uniformly at
random between −T and T .

It is easy to see (lemma 2.1) that a PL function generated in this way has
at most w points of non-linearity. In fact, the number of points of non-linearity
follows a binomial distribution:

3

Proposition 1.1. Given any w′ ∈ {1, 2, . . . , w}, the probability of a function
generated by this neural network having exactly w′ points of non-linearity is(

w

w′

)
Pw′

(1− P)w−w
′

where
(
w
w′

)
is the binomial coefficient, and

P =

{
R
2

if 0 < R ≤ 1

1− 1
2R

if R ≥ 1.
(1.1.2)

In particular, the expected number of points of non-linearity is given by

E(w′) = wP < w.

1.1.2 Functions on an unbounded domain

Suppose that we use the same parameter space Θ, but we now view our PL func-
tions as having domain R. Then for almost all θ ∈ Θ, the PL function will have
w points of non-linearity. However, the distribution of these points is far from
uniform. Differentiating the above cresult, we find that the probability density
function of the distribution of these w points is given by

P(|x| = r) =

{
w
2

if 0 ≤ r ≤ 2
w
2r2

if 2 ≤ r
(1.1.3)

r

P(|x| = r)

1.1.3 Spherical parameter space

Our setup here is similar. We again fix a positive real number T , and define

ΘT = [−T, T]w, (1.1.4)

a box of side-length 2T and dimension w, centred at 0 ∈ Rw.
The ‘spherical’ part comes in ΘL; we define

ΘL = {L ∈ Rw : |L| ≤ T}, (1.1.5)

4

a sphere of radius T around the origin in Rw. Again, we equip ΘL with the
Lebesgue measure.

In this context it does not seem so easy to compute the exact probability of a
given number of points of non-linearity occurring. However, at least for R ≤ 1, we
can compute the expected number of points of non-linearity.

Proposition 1.2. Assume 0 < R ≤ 1. For w even we have

E(w′) =
Rw2w

(w + 1)π

(
w − 1

w/2

)−1
∼ R

√
2w/π. (1.1.6)

For odd w we have

E(w′) =
Rw2

2w−1(w + 1)

(
w − 1

(w − 1)/2

)
∼ R

√
2w/π. (1.1.7)

Here ∼ means that the ratio tends to 1 as w tends to infinity.

Since
√
w is much smaller than w, this indicates that such functions tend

strongly to having few points of linearity.

1.2 Possible generalisations and extensions

1.3 Training data

If the training data forces w points of non-linearity, then of course they will occur
with probability 1 among parameters fitting the training data. However, the fact
that we generally work with highly over-parametrised models says that this will in
general not be the case. We expect that similar results will hold (and be provable
with similar techniques) in the presence of training data, as long as certain ‘over-
parametrisation’ conditions are satisfied.

1.4 Higher dimensions

Instead of looking at functions taking values on an interval (−R,R) in the reals,
it is natural to look at function on (−R,R)i for some positive integer i. Here the
locus of points where the function is not linear will not be finite; as such, instead
of using the cardinality of that set as a measure of simplicity, we will instead use
its Hausdorff measure. We believe that similar results can be shown, by similar
methods.

5

1.5 Different activation functions

Our results are valid not just for the ReLU activation function, but in fact any
piecewise-linear activation function which has a unique point of non-linearity at
the origin. Generalising to other PL activation functions will require no major
changes. For differentiable activation functions which are asymptotically linear,
we can replace the measure of the locus of points of non-linearity by (for example)
the integral of the square of the largest eigenvalue of the Hessian. Again, we expect
similar results, but different techniques will be required to prove them.

These results strongly suggest that neural networks (at least with one layer
and ReLU activation) will not generalise well when approximating e.g. periodic or
polynomial functions. To rectify this, one could assign some neurons a periodic or
polynomial activation function. Heuristic computations suggest that the dilation
is a reasonable predictor of bias in the presence of polynomial activation functions
(i.e. functions with lower dilation are more likely to be chosen).

2 DNNs with ReLU activation; rectangular norm

In this section we fix
ϕ : R→ R;x 7→ max(x, 0),

though the same analysis and results hold for any continuous activation function
which fails to be linear exactly at 0.

Given θ ∈ Θ, we write Dθ ⊆ (−R,R) for the set of points of non-linearity of
the function given by the parameters θ.

Lemma 2.1. #Dθ ≤ w, and this maximum can be achieved.

Proof. Suppose the image of X is not contained in a coordinate hyperplane of Rw.
Then Dθ is exactly the image under a linear map of the intersection of the image
of X with the coordinate hyperplanes in Rw, of which there are at most w.

On the other hand, if the image of X is contained in the intersection of exactly
w′ of the coordinate hyperplanes, then the image of X hits at most w − w′ other
coordinate hyperplanes.

Fix w′ ∈ {0, 1, . . . , w}. Our first goal is to compute P(#Dθ = w′).
A point in c ∈ Rw is chosen uniformly at random in a box around 0 of side-

length 2T . Another point l ∈ Rw is chosen uniformly at random in a box around
0 of side-length 2RT . Then we consider the line segment in Rw joining c − l and
c+ l, and we want to compute the probability of this segment meeting any of the
coordinate hyperplanes; given 1 ≤ i ≤ w write Pi for the probability of our line
segment meeting the ith coordinate hyperplanes; this is independent of i, so we
also write it P .

6

Lemma 2.2. If R ≥ 2 then P = 1− 1
2R

. If 0 < R ≤ 1 then P = r
R

.

Proof. Without loss of generality, i = 1. Then for fixed c the probability of
intersecting the point x1 = 0 is

max(1− |c1|
RT

, 0).

Integrating over |c1| from 0 to T yields the result.

Since the probabilities of hitting the various axes are independent, we deduce

Proposition 2.3. For w′ ∈ {0, 1, . . . , w} the probability of a function generated
by this neural network having exactly w′ points of non-linearity is

P(#Dθ = w′) =

(
w

w′

)
Pw′

(1− P)w−w
′
. (2.0.1)

The expected number of points of non-linearity is given by

E(#Dθ) =
∑

w′∈{0,...,w}

µ(Θw′)

µ(Θ)
w′ = wP . (2.0.2)

3 DNNs with ReLU activation; operator norm

Just as in the rectangular case, we have

Lemma 3.1. #D ≤ w, and this maximum can be achieved.

Fix w′ ∈ {0, 1, . . . , w}. Let

Θw′ := {θ ∈ Θ : µ(Dθ) = w′} ⊆ Θ. (3.0.1)

Note that µ(Θ) = tN . To compute the bias exactly is to compute the individual
µ(Θw′), which seems somewhat tricky. But by a simple application of classical
results from geometric probability we will be able to compute the expected measure
of Dθ. More precisely, we define

E(w′) =
∑

w′∈{0,...,w}

µ(Θw′)

µ(Θ) = tN
w′. (3.0.2)

For example, if E(w′) ≈ w this would tell us that most choices of parameters yield
µ(D) = w. On the other hand, if E(w′) ≈ 0 this would tell us that most choice of
parameter give an affine-linear function.

7

Proposition 3.2. Assume 0 < R ≤ 1. For w even we have

E(w′) =
Rw2w

(w + 1)π

(
w − 1

w/2

)−1
∼ R

√
2w/π. (3.0.3)

For odd w we have

E(w′) =
Rw2

2w−1(w + 1)

(
w − 1

(w − 1)/2

)
∼ R

√
2w/π. (3.0.4)

Here ∼ means that the ratio tends to 1 as w tends to infinity.

Proof. As before, only the first component θ1 : R → Rw of the map P (θ) has any
impact on the number µ(Dθ); more precisely, µ(Dθ) is the number of intersection
points of the image of [−1, 1] under θ1 with the coordinate hyperplanes in Rw

(excluding the measure-zero case where the image crosses the intersection of two
or more coordinate hyperplanes). Since the measure on Θ is a product of the
measures onto factors, we may simply ignore the second factor of θ.

We now relate the problem to a variation on Buffon’s needle. The image of
[−R,R] is a line segment in Rw, with centre a point in [−T, T]w chosen uniformly
at random, and endpoint chosen uniformly at random in a sphere of radius RT
around that centre. We want to compute the expected number of intersection
points with the coordinate hyperplanes.

For now we fix the length 2s ∈ [0, 2RT] of the needle, and compute the expec-
tation; later we will integrate over s. By additivity of expectations, we are reduced
to computing the expected number 1

w
E(w′) of intersection points with a single co-

ordinate hyperplane. By symmetry, the expected number of intersection points
with a coordinate hyperplane is the same as the expected number of intersection
points of a needle of length 2s, dropped uniformly at random in the plane, with
the subset

{x ∈ Rw : x1 ∈ 2TZ}. (3.0.5)

By [KR97, page 130] this expectation is given by1

E =
Ω1Ωw−1

wΩw

s

T
(3.0.6)

where for a non-negative integer k we have

Ω2k =
πk

k!
(3.0.7)

and

Ω2k+1 =
22k+1πkk!

(2k + 1)!
. (3.0.8)

1We write Ω where Klain and Rota write ω, to make the distinction from the width w clearer.

8

We find for even w that

E =
2ws

wπT

(
w − 1

w/2

)−1
(3.0.9)

and for odd w that

E =
s

2w−1T

(
w − 1

(w − 1)/2

)
. (3.0.10)

To simplify subsequent computations, we write E′ = TE/s, which depends only
on w. To complete the computation of the expectations we must integrate over
s ∈ [0, RT]. However, we do not integrate with respect to the uniform distribution
on [0, RT]; rather we want the endpoint of our needle to be chose uniformly in a
sphere. As such, the expectation for hitting one hyperplane is

1

w
E(w′) = B(w, TR)−1

∫ RT

s=0

s

T
E′S(w, s)ds (3.0.11)

where

B(w, TR) =
πw/2

Γ(w
2

+ 1)
(TR)w

is the volume of a ball of radius TR and dimension w, and

S(w, s) =
2πw/2

Γ(w
2
)
sw−1

is the surface area of a ball of dimension w and ratios s. This turns into

1

w
E(w′) =

Γ(w
2

+ 1)

πw/2(TR)w

∫ RT

s=0

s

T
E′

2πw/2

Γ(w
2
)
sw−1ds

= R
w

w + 1
E′.

(3.0.12)

For the asymptotics we apply the central binomial coefficient formula(
2k

k

)
∼ 4k√

kπ
, (3.0.13)

and for even w we also use (
2k − 1

k − 1

)
=

1

2

(
2k

k

)
. (3.0.14)

9

References

[KR97] Daniel A Klain and Gian-Carlo Rota. Introduction to geometric prob-
ability. Cambridge University Press, 1997.

[MSVP+19] Chris Mingard, Joar Skalse, Guillermo Valle-Pérez, David Mart́ınez-
Rubio, Vladimir Mikulik, and Ard A. Louis. Neural networks are a
priori biased towards boolean functions with low entropy, 2019.

[MVPSL20] Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, and Ard A. Louis.
Is sgd a bayesian sampler? well, almost. 2020.

[VPCL18] Guillermo Valle-Pérez, Chico Q. Camargo, and Ard A. Louis. Deep
learning generalizes because the parameter-function map is biased
towards simple functions, 2018.

David Holmes
Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA
Leiden, Netherlands
E-mail address : holmesdst@math.leidenuniv.nl

10

	Introduction
	Statement of main results
	Rectangular parameter space
	Functions on an unbounded domain
	Spherical parameter space

	Possible generalisations and extensions
	Training data
	Higher dimensions
	Different activation functions

	DNNs with ReLU activation; rectangular norm
	DNNs with ReLU activation; operator norm

